题目内容

【题目】定义: 数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.
理解:
(1)如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);
(2)如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF= CD,试判断△AEF是否为“智慧三角形”,并说明理由; 运用:

(3)如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.

【答案】
(1)解:如图1所示


(2)解:△AEF是否为“智慧三角形”,

理由如下:设正方形的边长为4a,

∵E是DC的中点,

∴DE=CE=2a,

∵BC:FC=4:1,

∴FC=a,BF=4a﹣a=3a,

在Rt△ADE中,AE2=(4a)2+(2a)2=20a2

在Rt△ECF中,EF2=(2a)2+a2=5a2

在Rt△ABF中,AF2=(4a)2+(3a)2=25a2

∴AE2+EF2=AF2

∴△AEF是直角三角形,

∵斜边AF上的中线等于AF的一半,

∴△AEF为“智慧三角形”;


(3)解:如图3所示:

由“智慧三角形”的定义可得△OPQ为直角三角形,

根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,

由垂线段最短可得斜边最短为3,

由勾股定理可得PQ= =2

PM=1×2 ÷3=

由勾股定理可求得OM= =

故点P的坐标(﹣ ),( ).


【解析】(1)连结AO并且延长交圆于C1 , 连结BO并且延长交圆于C2 , 即可求解;(2)设正方形的边长为4a,表示出DF=CF以及EC、BE的长,然后根据勾股定理列式表示出AF2、EF2、AE2 , 再根据勾股定理逆定理判定△AEF是直角三角形,由直角三角形的性质可得△AEF为“智慧三角形”;(3)根据“智慧三角形”的定义可得△OPQ为直角三角形,根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为3,根据勾股定理可求另一条直角边,再根据三角形面积可求斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网