题目内容

一条排水管的截面如图所示.已知排水管的截面圆半径OB=10,截面圆圆心O到水面的距离OC是6,则水面宽AB是


  1. A.
    16
  2. B.
    10
  3. C.
    8
  4. D.
    6
A
分析:先根据垂径定理得出AB=2BC,再根据勾股定理求出BC的长,进而可得出答案.
解答:∵截面圆圆心O到水面的距离OC是6,
∴OC⊥AB,
∴AB=2BC,
在Rt△BOC中,OB=10,OC=6,
∴BC===8,
∴AB=2BC=2×8=16.
故选A.
点评:本题考查的是垂径定理的应用,熟知垂径定理及勾股定理是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网