题目内容
【题目】如图1,抛物线C:y=x2经过变换可得到抛物线C1:y1=a1x(x﹣b1),C1与x轴的正半轴交于点A,且其对称轴分别交抛物线C、C1于点B1、D1.此时四边形OB1A1D1恰为正方形:按上述类似方法,如图2,抛物线C1:y1=a1x(x﹣b1)经过变换可得到抛物线C2:y2=a2x(x﹣b2),C2与x轴的正半轴交于点A2,且其对称轴分别交抛物线C1、C2于点B2、D2.此时四边形OB2A2D2也恰为正方形:按上述类似方法,如图3,可得到抛物线C3:y3=a3x(x﹣b3)与正方形OB3A3D3,请探究以下问题:
(1)填空:a1= ,b1= ;
(2)求出C2与C3的解析式;
(3)按上述类似方法,可得到抛物线n:yn=anx(x﹣bn)与正方形OBnAnDn(n≥1)
①请用含n的代数式直接表示出n的解析式;
②当x取任意不为0的实数时,试比较y2018与y2019的函数值的大小关系,并说明理由.
【答案】(1)1,2;(2)y2=x2﹣2x,y3=x2﹣2x;(3)①yn=x2﹣2x(n≥1),②当x≠0时,y2018>y2019.
【解析】
(1)求与x轴交点A1坐标,根据正方形对角线性质表示出B1的坐标,代入对应的解析式即可求出对应的b1的值,写出D1的坐标,代入y1的解析式中可求得a1的值;
(2)求与x轴交点A2坐标,根据正方形对角线性质表示出B2的坐标,代入对应的解析式即可求出对应的b2的值,写出D2的坐标,代入y2的解析式中可求得a2的值,写出抛物线C2的解析式;再利用相同的方法求抛物线C3的解析式;
(3)①根据图形变换后二次项系数不变得出an=a1=1,由B1坐标(1,1)、B2坐标(3,3)、B3坐标(7,7)得Bn坐标(2n﹣1,2n﹣1),则bn=2(2n﹣1)=2n+1﹣2(n≥1),写出抛物线n解析式.
②先求抛物线C2018和抛物线C2019的交点为(0,0),在交点的两侧观察图形得出y2018与y2019的函数值的大小.
(1)y1=0时,a1x(x﹣b1)=0,
x1=0,x2=b1,
∴A1(b1,0),
由正方形OB1A1D1得:OA1=B1D1=b1,
∴B1(,),D1(,),
∵B1在抛物线c上,则=()2,
b1(b1﹣2)=0,
b1=0(不符合题意),b1=2,
∴D1(1,﹣1),
把D1(1,﹣1)代入y1=a1x(x﹣b1)中得:﹣1=﹣a1,
∴a1=1,
故答案为:1,2;
(2)y2=0时,a2x(x﹣b2)=0,
x1=0,x2=b2,
∴A2(b2
由正方形OB2A2D2得:OA2=B2D2=b2,
∴B2(,),
∵B2在抛物线c1上,则=()2﹣2×,
b2(b2﹣6)=0,
b2=0(不符合题意),b2=6,
∴D2(3,﹣3),
把D2(3,﹣3)代入C2的解析式:﹣3=3a2(3﹣6),a2=,
∴C2的解析式:y2=x(x﹣6)=x2﹣2x,
y3=0时,a3x(x﹣b3)=0,
x1=0,x2=b3,
∴A3(b3,0),
由正方形OB3A3D3得:OA3=B3D3=b3,
∴B3(,),
∵B3在抛物线C2上,则=()2﹣2×,
b3(b3﹣18)=0,
b3=0(不符合题意),b3=18,
∴D3(9,﹣9),
把D3(9,﹣9)代入C3的解析式:﹣9=9a3(9﹣18),a3=,
∴C3的解析式:y3=x(x﹣18)=x2﹣2x;
(3)①n的解析式:yn=x2﹣2x(n≥1).
②由上题可得:
抛物线C2018的解析式为:y2018=x2﹣2x,
抛物线C2019的解析式为:y2019=x2﹣2x,
∴两抛物线的交点为(0,0);
如图4,由图象得:当x≠0时,y2018>y2019.