题目内容
【题目】在△ABC中,已知∠ABC=50°,∠ACB=60°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,则∠BHC= °
【答案】110
【解析】略
【题目】如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为( )A.44°B.66°C.88°D.92°
【题目】如图,抛物线C1:y=x2+4x﹣3与x轴交于A、B两点,将C1向右平移得到C2,C2与x轴交于B、C两点.
(1)求抛物线C2的解析式.
(2)点D是抛物线C2在x轴上方的图象上一点,求S△ABD的最大值.
(3)直线l过点A,且垂直于x轴,直线l沿x轴正方向向右平移的过程中,交C1于点E交C2于点F,当线段EF=5时,求点E的坐标.
【题目】如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足若,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.
(1)求证:△ADF∽△AED;
(2)求FG的长;
(3)求tan∠E的值.
【题目】麻城市思源实验学校自从开展“高效课堂”模式以来,在课堂上进行当堂检测效果很好.每节课40分钟教学,假设老师用于精讲的时间x(单位:分钟)与学生学习收益量y的关系如图1所示,学生用于当堂检测的时间x(单位:分钟)与学生学习收益y的关系如图2所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于当堂检测的时间不超过用于精讲的时间.
(1)求老师精讲时的学生学习收益量y与用于精讲的时间x之间的函数关系式;
(2)求学生当堂检测的学习收益量y与用于当堂检测的时间x的函数关系式;
(3)问此“高效课堂”模式如何分配精讲和当堂检测的时间,才能使学生在这40分钟的学习收益总量最大?
【题目】若x>y,则﹣x﹣2_____﹣y﹣2(填“<”、“>”或“=”)
【题目】把下列各式因式分解(1)ap﹣aq+am(2)a2﹣4(3)a2﹣2a+1(4)ax2+2axy+ay2 .
【题目】如图是尺规作图的痕迹,下列说法不正确的是( )A.AE,BF是△ABC的内角平分线B.CG也是△ABC的一条内角平分线C.点O到△ABC三边的距离相等D.AO=BO=CO
【题目】以下各组数据为长度的三条线段,能组成三角形的是( )
A.1,2,3B.1,4,3C.5,9,5D.2,7,3