题目内容
如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论正确的是( )
A、b2>4ac | B、ac>0 | C、a-b+c>0 | D、4a+2b+c<0 |
练习册系列答案
相关题目
下列说法中正确的个数是( )
①不可能事件发生的概率为0;
②一个对象在实验中出现的次数越多,频率就越大;
③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;
④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率.
①不可能事件发生的概率为0;
②一个对象在实验中出现的次数越多,频率就越大;
③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;
④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率.
A、1 | B、2 | C、3 | D、4 |
二次函数y=ax2+bx+c(a,b,c为常数且a≠0)中的x与y的部分对应值如下表:
下列结论正确的是( )
x | -2 | -1 | 0 | 1 | 2 |
y | -10 | 0 | 6 | 8 | 6 |
A、a>0 |
B、3是方程ax2+bx+c=0的一个根 |
C、a+b+c=0 |
D、当x<1时,y随x的增大而增减小 |
下列二次函数中,图象以直线x=2为对称轴,且当x<0时,y>5的是( )
A、y=(x+2)2+1 | B、y=(x-2)2+1 | C、y=-(x+2)2+1 | D、y=-(x-2)2+1 |
二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是( )
A、c>-1 | B、b>0 | C、2a+b≠0 | D、9a+c>3b |
抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论:
①b2-4ac<0;②a+b+c<0;③c-a=2;④方程ax2+bx+c-2=0有两个相等的实数根.
其中正确结论的个数为( )
①b2-4ac<0;②a+b+c<0;③c-a=2;④方程ax2+bx+c-2=0有两个相等的实数根.
其中正确结论的个数为( )
A、1个 | B、2个 | C、3个 | D、4个 |
如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(-1,2)和(1,0),下列结论中正确的是( )
A、2a+b<0 | ||
B、(2a+
| ||
C、a>1 | ||
D、3a+c<2 |
已知下列函数①y=x2 ②y=-x2 ③y=(x-1)2+2,其中,图象通过平移可以得到函数y=x2+2x-3的图象的有( )
A、①、② | B、①、③ | C、②、③ | D、①、②、③ |