题目内容
【题目】如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的3倍,则称这样的方程为“立根方程”.以下关于立根方程的说法:
①方程x2﹣4x﹣12=0是立根方程;
②若点(p,q)在反比例函数y=的图象上,则关于x的方程px2+4x+q=0是立根方程;
③若一元二次方程ax2+bx+c=0是立根方程,且相异两点M(1+t,s),N(4﹣t,s)都在抛物线y=ax2+bx+c上,则方程ax2+bx+c=0的其中一个根是.
正确的是( )
A. ①② B. ② C. ③ D. ②③
【答案】D
【解析】试题解析:①解方程 得,
∴此方程不是立根方程,故①错误;
②∵点在反比例函数的图象上,
解方程得,
∴关于x的方程是立根方程,故②正确;
③∵方程 是立根方程,
∴设
∵相异两点都在抛物线上,
∴抛物线的对称轴
故③正确.
故选D.
练习册系列答案
相关题目
【题目】某公司欲招聘一名部门经理,对甲、乙、丙三名候选人进行了三项素质测试.各项测试成绩如表格所示:
测试项目 | 测试成绩 | ||
甲 | 乙 | 丙 | |
专业知识 | 74 | 87 | 90 |
语言能力 | 58 | 74 | 70 |
综合素质 | 87 | 43 | 50 |
(1)如果根据三次测试的平均成绩确定人选,那么谁将被录用?
(2)根据实际需要,公司将专业知识、语言能力和综合素质三项测试得分按4:3:1的比例确定每个人的测试总成绩,此时谁将被录用?
(3)请重新设计专业知识、语言能力和综合素质三项测试得分的比例来确定每个人的测试总成绩,使得乙被录用,若重新设计的比例为x:y:1,且x+y+1=10,则x= ,y= .(写出x与y的一组整数值即可).