题目内容
【题目】求使不等式成立的x的取值范围:
(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0.
【答案】x≥﹣1.
【解析】试题分析:将(x﹣1)3﹣(x﹣1)(x2﹣2x+3)因式分解化为(x﹣1)2(x+1),根据因(x﹣1)2是非负数,要使(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0,必须x+1≥0,解不等式即可求得x的取值范围.
试题解析:
(x﹣1)3﹣(x﹣1)(x2﹣2x+3)
=(x﹣1)3﹣(x﹣1)2(x﹣2)
=(x﹣1)2(x+1);
因(x﹣1)2是非负数,要使(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0,
只要x+1≥0即可,
即x≥﹣1.
练习册系列答案
相关题目