题目内容
【题目】如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L,M,D在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.
【答案】BK与DM的关系是互相垂直且相等,理由见解析.
【解析】试题分析:用旋转的方法解答本题,将△ABK绕A逆时针旋转90°后与△ADM重合,可证明△ABK和△ADM全等,BK和DM是对应边,然后根据全等三角形的性质可以证明BK与DM的关系是互相垂直且相等.
试题解析:BK与DM的关系是互相垂直且相等,
∵四边形ABCD和四边形AKLM都是正方形,
∴AB=AD,AK=AM,∠BAK=90°﹣∠DAK,∠DAM=90°﹣∠DAK,
∴∠BAK=∠DAM,
,
∴△ABK≌△ADM(SAS),
把△ABK绕A逆时针旋转90°后与△ADM重合,
∴BK=DM且BK⊥DM.
练习册系列答案
相关题目
【题目】为了解某校中学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:根据以上提供的信息,解答下列问题:
节目 | 人数(名) | 百分比 |
最强大脑 | 5 | 10% |
朗读者 | 15 | b% |
中国诗词大会 | a | 40% |
出彩中国人 | 10 | 20% |
(1)x= ,a= ,b= ;
(2)补全上面的条形统计图;
(3)在喜爱《最强大脑》的学生中,有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加潍坊市组织的竞赛活动,请用树状图或列表法求出所抽取的2名同学恰好是1名男同学和1名女同学的概率.