题目内容
【题目】如图,已知抛物线经过A(-2,0)B(-3,3)及原点O,顶点为C。
(1)求抛物线的解析式;
(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标。
(3)P是抛物线上的第一象限内的动点,过点P作PM⊥ x轴,垂足为M,是否存在点P点使得以P、M、A为顶点的三角形与△BOC相似?若存在,求P点的坐标,若不存在,说明理由。
【答案】(1)y=x2+x(2)D1(1,3),D2(-3,3),C(-1,-1)(3)(,
)或(3,15)
【解析】试题分析:本题着重考查了待定系数法求二次函数解析式、平行四边形的性质、相似三角形的判定和性质等知识点,综合性强,同时也考查了学生分类讨论,数形结合的数学思想方法.
(1)设抛物线的解析式为y=ax2+bx+c(a≠0),把点A(-2,0),B(-3,3),O(0,0),代入求出a,b,c的值即可;
(2)首先由A的坐标可求出OA的长,再根据四边形AODE是平行四边形,D在对称轴直线x=-1右侧,进而可求出D横坐标为:-1+2=1,代入抛物线解析式即可求出其横坐标;
(3)分△PMA∽△COB和△PMA∽△BOC表示出PM和AM,从而表示出点P的坐标,代入求得的抛物线的解析式即可求得t的值,从而确定点P的坐标.
试题解析:(1)抛物线的解析式为;
(2)①当AE为边时,
∵A、O、D、E为顶点的四边形是平行四边形,
∴DE=AO=2,则D在x轴下方不可能,
∴D在轴上方且DE=2,则D1(1,3),D2(﹣3,3),
②当AO为对角线时,则DE与AO互相平分,
∵点E在对称轴上,且线段AO的中点横坐标为-1,
由对称性知,符合条件的点D只有一个,与点C重合,即C(-1,-1),
故符合条件的点D有三个,分别是D1(1,3),D2(-3,3),C(-1,-1)。
(3)存在,如图:
∵B(-3,3),C(-1,-1),
根据勾股定理得:
BO2=18,CO2=2,BC2=20,
∴BO2+CO2=BC2,
∴△BOC是直角三角形,
假设存在点P,使以P,M,A为顶点的 三角形与△BOC相似,
设P(x,y),
由题意知x>0,y>0,且,
①若△AMP∽△BOC,
则,即x+2=3(x2+2x)得:
,x2=-2(舍去)当
时,
,即P(
);
②若△PMA∽△BOC,,
即:x2+2x=3(x+2),
得:x1=3,x2=-2(舍去),
当x=3时,y=15,即P(3,15),
故符合条件的点P有两个,分别是P()或(3,15).
![](http://thumb.zyjl.cn/images/loading.gif)