题目内容
分析:S△ADF-S△BEF=S△ABD-S△ABE,所以求出三角形ABD的面积和三角形ABE的面积即可,因为EC=2BE,点D是AC的中点,且S△ABC=12,就可以求出三角形ABD的面积和三角形ABE的面积.
解答:解:∵点D是AC的中点,
∴AD=
AC,
∵S△ABC=12,
∴S△ABD=
S△ABC=
×12=6.
∵EC=2BE,S△ABC=12,
∴S△ABE=
S△ABC=
×12=4,
∵S△ABD-S△ABE=(S△ADF+S△ABF)-(S△ABF+S△BEF)=S△ADF-S△BEF,
即S△ADF-S△BEF=S△ABD-S△ABE=6-4=2.
故答案为:2.
∴AD=
| 1 |
| 2 |
∵S△ABC=12,
∴S△ABD=
| 1 |
| 2 |
| 1 |
| 2 |
∵EC=2BE,S△ABC=12,
∴S△ABE=
| 1 |
| 3 |
| 1 |
| 3 |
∵S△ABD-S△ABE=(S△ADF+S△ABF)-(S△ABF+S△BEF)=S△ADF-S△BEF,
即S△ADF-S△BEF=S△ABD-S△ABE=6-4=2.
故答案为:2.
点评:本题考查三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差.
练习册系列答案
相关题目