题目内容

【题目】如图,四边形ABCD中,AB=CBAD=CD,对角线ACBD相交于点OOEABOFCB,垂足分别是EF.求证:OE=OF

【答案】见解析

【解析】欲证明OE=OF,只需推知BD平分∠ABC,所以通过全等三角形△ABD≌△CBD(SSS)的对应角相等得到∠ABD=∠CBD,问题就迎刃而解了.

证明:在△ABD和△CBD中,

AB=CB,AD=CD,BD=BD,

∴△ABD≌△CBD(SSS),

∴∠ABD=∠CBD,

∴BD平分∠ABC.

又∵OE⊥AB,OF⊥CB,

∴OE=OF.

“点睛”本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网