题目内容
【题目】如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距离为4,求阴影部分的面积为( )
A.20
B.24
C.25
D.26
【答案】D
【解析】解:∵平移距离为4, ∴BE=4,
∵AB=8,DH=3,
∴EH=8﹣3=5,
∵△HEC~△ABC,
∴ = = ,
∴ = ,
解得CE= ,
∴阴影部分的面积为:
S△DEF﹣S△HEC
=8×( +4)÷2﹣ ×5÷2
= ﹣
=26
故选:D.
【考点精析】本题主要考查了平移的性质的相关知识点,需要掌握①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化;②经过平移后,对应点所连的线段平行(或在同一直线上)且相等才能正确解答此题.
练习册系列答案
相关题目
【题目】二次函数y=ax2+bx+c图象上部分点的坐标满足下表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | … |
y | … | ﹣3 | ﹣2 | ﹣3 | ﹣6 | ﹣11 | … |
则该函数图象的顶点坐标为( )
A.(﹣3,﹣3)
B.(﹣2,﹣2)
C.(﹣1,﹣3)
D.(0,﹣6)