题目内容
【题目】如图,△ABC内接于⊙O且AB=AC,延长BC至点D,使CD=CA,连接AD交⊙O于点E,连接BE、CE.
(1)求证:△ABE≌△CDE;
(2)填空:
①当∠ABC的度数为 时,四边形AOCE是菱形;
②若AE=6,EF=4,DE的长为 .
【答案】(1)证明见解析(2)①60°;②9
【解析】
(1)根据AAS证明两三角形全等;
(2)①先证明∠AOC=∠AEC=120°,∠OAE=∠OCE=60°,可得AOCE,由OA=OC可得结论;②证明△AEF∽△DEC,然后依据相似三角形的性质列比例式求解即可.
(1)∵AB=AC,CD=CA,
∴∠ABC=∠ACB,AB=CD,
∵四边形ABCE是圆内接四边形,
∴∠ECD=∠BAE,∠CED=∠ABC,
∵∠ABC=∠ACB=∠AEB,
∴∠CED=∠AEB,
∴△ABE≌△CDE(AAS);
(2)①当∠ABC的度数为60°时,四边形AOCE是菱形;
理由是:连接AO、OC,
∵四边形ABCE是圆内接四边形,
∴∠ABC+∠AEC=180°,
∵∠ABC=60,
∴∠AEC=120°=∠AOC,
∵OA=OC,
∴∠OAC=∠OCA=30°,
∵AB=AC,
∴△ABC是等边三角形,
∴∠ACB=60°,
∵∠ACB=∠CAD+∠D,
∵AC=CD,
∴∠CAD=∠D=30°,
∴∠ACE=180°﹣120°﹣30°=30°,
∴∠OAE=∠OCE=60°,
∴四边形AOCE是平行四边形,
∵OA=OC,
∴AOCE是菱形;
②∵△ABE≌△CDE,
∴AE=CE=5,BE=ED,
∴∠ABE=∠CBE,∠CBE=∠D,
又∵∠EAC=∠CBE,
∴∠EAC=∠D.
又∵∠CED=∠AEB,
∴△AEF∽△DEC,
∴,即,解得DE=9.
故答案为:①60°;②9.