题目内容
【题目】如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.
(1)若AB=4,求的长;
(2)若=,AD=AP,求证:PD是⊙O的切线.
【答案】(1);(2)证明见解析.
【解析】
(1)连接OC,OD,由圆周角定理得到∠COD=2∠CAD,∠CAD=45°,可得∠COD=90°,根据弧长公式计算即可得到结论;
(2)由已知条件得到∠BOC=∠AOD,由圆周角定理得到∠AOD=45°,根据等腰三角形的性质得到∠ODA=∠OAD=67.5°,利用角和角的关系,求得ADP=∠CAD=22.5°,得到∠ODP=∠ODA+∠ADP=90°,于是得到结论.
解:
(1)连接OC,OD,
∵∠COD=2∠CAD,∠CAD=45°,
∴∠COD=90°,
∵AB=4,
∴OC=AB=2,
∴的长=×π×2=π;
(2)∵=,
∴∠BOC=∠AOD,
∵∠COD=90°,
∴∠AOD=45°,
∵OA=OD,
∴∠ODA=∠OAD,
∵∠AOD+∠ODA+∠OAD=180°,
∴∠ODA=67.5°,
∵AD=AP,
∴∠ADP=∠APD,
∵∠CAD=∠ADP+∠APD,∠CAD=45°,
∴∠ADP=∠CAD=22.5°,
∴∠ODP=∠ODA+∠ADP=90°,
∴PD是⊙O的切线.
练习册系列答案
相关题目