题目内容
【题目】已知:如图,在ABCD中,点F在AB的延长线上,且BF=AB,连接FD,交BC于点E.
(1)说明△DCE≌△FBE的理由;
(2)若EC=3,求AD的长.
【答案】(1)证明:∵四边形ABCD是平行四边形,
∴AB=DC,AB∥DC
∴∠CDE=∠F
又∵BF=AB
∴DC=FB
在△DCE和△FBE中,
∴△DCE≌△FBE(AAS)
(2)解:∵△DCE≌△FBE,
∴EB=EC,
∵EC=3,
∴BC=2EB=6
∵四边形ABCD是平行四边形,
∴AD=BC=6.
【解析】试题分析:(1)由四边形ABCD是平行四边形,根据平行四边形的对边平行且相等,即可得AB=DC,AB∥DC,继而可求得∠CDE=∠F,又由BF=AB,即可利用AAS,判定△DCE≌△FBE;
(2)由(1),可得BE=EC,即可求得BC的长,又由平行四边形的对边相等,即可求得AD的长.
(1)证明:∵四边形ABCD是平行四边形,
∴AB=DC,AB∥DC,
∴∠CDE=∠F,
又∵BF=AB,
∴DC=FB,
在△DCE和△FBE中,
∵
∴△DCE≌△FBE(AAS)
(2)解:∵△DCE≌△FBE,
∴EB=EC,
∵EC=3,
∴BC=2EB=6,
∵四边形ABCD是平行四边形,
∴AD=BC,
∴AD=6.
练习册系列答案
相关题目
【题目】某车间一周内计划每天生产100辆电动车,由于工人实行轮休,每天上班人数不一定相等,实际每天生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数)
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增减 | ﹣5 | +5 | ﹣5 | +5 | +10 | ﹣10 | ﹣15 |
(1)本周三生产了多少辆电动车?
(2)本周总产量与计划总生产量相比,是增加多少辆?还是减少多少辆?
(3)产量最多的一天比产量最少的一天多生产了多少辆?
(4)请你用折线图画出电动车产量的变化情况.