题目内容
【题目】实验与探究
(1)在图①,图②,图③中,给出平行四边形ABCD的顶点A,B,D的坐标,写出图①,图②,图③中的顶点C的坐标,它们分别是________,___________,____________;
(2)在图④中,给出平行四边形ABCD的顶点A,B,D的坐标(如图所示),求出顶点C的坐标(C点坐标用含a,b,c,d,e,f的代数式表示);
归纳与发现
(3)通过对图①,图②,图③,图④的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点C坐标为(m,n)(如图④)时,则四个顶点的横坐标a,c,m,e之间的等量关系为___________,纵坐标b,d,n,f之间的等量关系为__________.(不必证明)
【答案】(1) (5,2),(e+c,d),(c+e-a,d) ;(2) C(e+c-a,f+d-b) ;(3) m+a=c+e,n+b=d+f
【解析】试题分析:(1)根据平行四边形的性质:对边平行且相等,得出图2,3中顶点C的坐标分别是(e+c,d),(c+e﹣a,d);
(2)分别过点A,B,C,D作x轴的垂线,垂足分别为A1,B1,C1,D1,分别过A,D作AE⊥BB1于E,DF⊥CC1于点F.在平行四边形ABCD中,CD=BA,根据内角和定理,利用BB1∥CC1,可推出∠EBA=∠FCD,△BEA≌△CFD.依题意得出AF=DF=a﹣c,BE=CF=d﹣b.设C(x,y).由e﹣x=a﹣c,得x=e+c﹣a.由y﹣f=d﹣b,得y=f+d﹣b.继而推出点C的坐标.
(3)在平行四边形ABCD中,CD=BA,同理证明△BEA≌△CFD(同(2)证明).然后推出AF=DF=a﹣c,BE=CF=d﹣b.又已知C点的坐标为(m,n),e﹣m=a﹣c,故m=e+c﹣a.由n﹣f=d﹣b,得出n=f+d﹣b.
试题解析:解:(1)利用平行四边形的性质:对边平行且相等,得出图1、图2,3中顶点C的坐标分别是:(5,2)、(e+c,d),(c+e﹣a,d).
故答案为:(5,2)、(e+c,d),(c+e﹣a,d).
(2)分别过点A,B,C,D作x轴的垂线,垂足分别为A1,B1,C1,D1,分别过A,D作AE⊥BB1于E,DF⊥CC1于点F.
在平行四边形ABCD中,CD=BA,又∵BB1∥CC1,∴∠EBA+∠ABC+∠BCF=∠ABC+∠BCF+∠FCD=180度,∴∠EBA=∠FCD.
在△BEA和△CFD中,∵∠AEB=∠DFC,∠EFA=∠FCD,AB=DC,∴△BEA≌△CFD(AAS),∴AE=DF=a﹣c,BE=CF=d﹣b.
设C(x,y).由e﹣x=a﹣c,得:x=e+c﹣a.
由y﹣f=d﹣b,得:y=f+d﹣b,∴C(e+c﹣a,f+d﹣b).
(3)在平行四边形ABCD中,CD=BA,同理可得△BEA≌△CFD,则AF=DF=a﹣c,BE=CF=d﹣b,∵C点的坐标为(m,n),e﹣m=a﹣c,∴m=e+c﹣a.由n﹣f=d﹣b,得:n=f+d﹣b,故答案为:m=c+e﹣a,n=d+f﹣b或m+a=c+e,n+b=d+f.