题目内容
下列四个实数中最小的是( )
A. B. 2 C. D. 1.4
如图,在平面直角坐标系中,直线l:y=kx+h与x轴相交于点A(﹣1,0),与y轴相交于点C,与抛物线y=﹣x2+bx+3的一交点为点D,抛物线过x轴上的AB两点,且CD=4AC.
(1)求直线l和抛物线的解析式;
(2)点E是直线l上方抛物线上的一动点,求当△ADE面积最大时,点E的坐标;
(3)设P是抛物线对称轴上的一点,点Q在抛物线上,四边形APDQ能否为矩形?若能,请直接写出点P的坐标;若不能,请说明理由.
一个多边形的内角和是外角和的2倍,则这个多边形的边数为_____.
计算(2﹣)×=_____.
如图,一个正方体切去一个三棱锥后所得几何体的俯视图是( )
A. B. C. D.
如图:在△ABC中,∠BAC =,AD⊥BC于D,CE平分∠ACB,交AD于G,交AB于E,EF⊥BC于F,求证:四边形AEFG是菱形.
如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB,AC于M,N两点,则图中阴影部分的面积是___(保留π).
【问题提出】
如图①,已知△ABC是等腰三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF
试证明:AB=DB+AF
【类比探究】
(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由
(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.
下列等式从左到右的变形,属于因式分解的是( )
A. a(x﹣y)=ax﹣ay B. x2+2x+1=x(x+2)+1
C. (x+1)2=x2+2x+1 D. x2﹣x=x(x﹣1)