题目内容
【题目】已知:如图1,线段AB、CD相交于点O,连接AD、CB,如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N,试解答下列问题:
(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:_____________________;
(2)在图2中,若∠D=40°,∠B=30°,试求∠P的度数(写出解答过程);
(3)如果图2中,∠D和∠B为任意角,其他条件不变,试写出∠P与∠D、∠B之间的数量关系(直接写出结论即可).
【答案】(1)∠A+∠D=∠B+∠C;(2)35°;(3)2∠P=∠B+∠D
【解析】
(1)根据三角形的内角和等于180°,易得∠A+∠D=∠B+∠C;
(2)仔细观察图2,得到两个关系式∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B,再由角平分线的性质得∠1=∠2,∠3=∠4,两式相减,即可得结论.
(3)参照(2)的解题思路.
解:(1)∠A+∠D=∠B+∠C;
(2)由(1)得,∠1+∠D=∠3+∠P,∠2+∠P=∠4+∠B,
∴∠1-∠3=∠P-∠D,∠2-∠4=∠B-∠P,
又∵AP、CP分别平分∠DAB和∠BCD,
∴∠1=∠2,∠3=∠4,
∴∠P-∠D=∠B-∠P,
即2∠P=∠B+∠D,
∴∠P=(40°+30°)÷2=35°.
(3)由(2)的解题步骤可知,∠P与∠D、∠B之间的数量关系为:2∠P=∠B+∠D.
【题目】某石化乙烯厂某车间生产甲、乙两种塑料的相关信息如下表,请你解答下列问题:
出厂价 | 成本价 | 排污处理费 | |
甲种塑料 | 2100(元/吨) | 800(元/吨) | 200(元/吨) |
乙种塑料 | 2400(元/吨) | 1100(元/吨) | 100(元/吨) 另每月还需支付设备管理、维护费20000元 |
(1)设该车间每月生产甲、乙两种塑料各x吨,利润分别为y1元和y2元,分别求出y1和y2与x的函数关系式(注:利润=总收入-总支出);
(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,求该月生产甲、乙塑料各多少吨时,获得的总利润最大?最大利润是多少?