题目内容
【题目】如图,在ABCD中,CG⊥AB于点G,∠ABF=45°,F在CD上,BF交CG于点E,连接AE,且AE⊥AD.
(1)若BG=2,BC=,求EF的长度;
(2)求证:CE+BE=AB.
【答案】(1)3;(2)见解析
【解析】
(1)在中,利用勾股定理求得,再在等腰中求得;然后根据平行四边形的性质得AB∥CD,继而得∠EFG=45°,为等腰直角三角形,可得结果;
(2)据平行四边形的性质结合已知得AE⊥AD,根据等角的余角相等得∠GAE=∠GCB,从而证得△BCG≌△EAG(AAS),由于AB=BG+AG=CE+EG+BG结合BG=EG=BE,从而得证.
(1)∵CG⊥AB,
∴∠AGC=∠CGB=90°,
∵BG=2,BC=,
∴CG=,
∵∠ABF=45°,
∴BG=EG=2,
∴CE=3,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠GCD=∠BGC=90°,∠EFG=∠GBE=45°,
∴CF=CE=3,
∴EF=CE=3;
(2)如图,延长AE交BC于H,
∵四边形ABCD是平行四边形,
∴BC∥AD,
∴∠AHB=∠HAD,
∵AE⊥AD,
∴∠AHB=∠HAD=90°,
∴∠BAH+∠ABH=∠BCG+∠CBG=90°,
∴∠GAE=∠GCB,
在△BCG与△EAG中,,
∴△BCG≌△EAG(AAS),
∴AG=CG,
∴AB=BG+AG=CE+EG+BG,
∵BG=EG=BE,
∴CE+BE=AB.
【题目】为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整.
收集数据:
随机抽取甲乙两所学校的 20 名学生的数学成绩进行
甲 | 91 | 89 | 77 | 86 | 71 | 31 | 97 | 93 | 72 | 91 |
81 | 92 | 85 | 85 | 95 | 88 | 88 | 90 | 44 | 91 | |
乙 | 84 | 93 | 66 | 69 | 76 | 87 | 77 | 82 | 85 | 88 |
90 | 88 | 67 | 88 | 91 | 96 | 68 | 97 | 59 | 88 |
整理、描述数据 :
按如下数据段整理、描述这两组数据
分析数据 :
两组数据的平均数、中位数、众数、方差如下表:
a经统计,表格中m的值是 ___________ .
得出结论:
b若甲学校有 400 名初二学生,估计这次考试成绩 80 分以上人数为____________ .
c可以推断出 _______学校学生的数学水平较高,理由为:①__________________;②_________________.(至少从两个不同的角度说明推断的合理性)