题目内容

【题目】如图,在矩形ABCD中,E、F分别是CD、BC上的点.若∠AEF=90°,则一定有( )

A.△ADE∽△ECF
B.△BCF∽△AEF
C.△ADE∽△AEF
D.△AEF∽△ABF

【答案】A
【解析】在矩形ABCD中,

∵∠D=∠C=90°,∠AEF=90°,

∴∠DEA+∠CEF=90°,∠DEA+∠DAE=90°,

∴∠DAE=∠CEF,

∴△ADE∽△ECF.

所以答案是:A.

【考点精析】本题主要考查了相似三角形的判定的相关知识点,需要掌握相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS)才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网