题目内容
【题目】如图,△ABC中,CD是AB边上的高,AC=8,∠ACD=30°,tan∠ACB=,点P为CD上一动点,当BP+CP最小时,DP= .
【答案】5.
【解析】
试题分析:如图,作PE⊥AC于E,BE′⊥AC于E′交CD于P′.
∵CD⊥AB,∠ACD=30°,∠PEC=90°,AC=8,
∴PE=PC,∠A=60°,∠ABE′=30°,AD=4,CD=4,
∴PB+PC=PB+PE,
∴当BE′⊥AC时,PB+PE=BP′+P′E′=BE′最小,
∵tan∠ACB==,设BE′=5,CE′=3k,
∴AE′=8﹣3k,AB=16﹣6k,BD=16﹣6k﹣4=12﹣6k,
∴BC2=BD2+CD2=BE′2+CE′2,
∴(12﹣6k)2+48=9k2+75k2,
整理得k2+3k﹣4=0,
∴k=1或﹣4(舍弃),
∴BE′=5,
∴PB+PC的最小值为5.
练习册系列答案
相关题目
【题目】体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“﹣”表示成绩小于14秒
﹣1 | +0.8 | 0 | ﹣1.2 | ﹣0.1 | 0 | +0.5 | ﹣0.6 |
(1)求这个小组的男生达标率是多少?
(2)求这个小组8名男生的平均成绩是多少?