题目内容

【题目】△ABC中,AB=AC,点D、E、F分别在BC、AB、AC上,∠EDF=∠B.
(1)如图1,求证:DECD=DFBE
(2)D为BC中点如图2,连接EF.
①求证:ED平分∠BEF;
②若四边形AEDF为菱形,求∠BAC的度数及 的值.

【答案】
(1)证明:∵△ABC中,AB=AC,

∴∠B=∠C.

∵∠B+∠BDE+∠DEB=180°,∠BDE+∠EDF+∠FDC=180°,∠EDF=∠B,

∴∠FDC=∠DEB,

∴△BDE∽△CFD,

即DECD=DFBE


(2)解:①由(1)证得△BDE∽△CFD,

∵D为BC中点,

∴BD=CD,

=

∵∠B=∠EDF,

∴△BDE~△DFE,

∴∠BED=∠DEF,

∴ED平分∠BEF;

②∵四边形AEDF为菱形,

∴∠AEF=∠DEF,

∵∠BED=∠DEF,

∴∠AEF=60°,

∵AE=AF,

∴∠BAC=60°,

∵∠BAC=60°,

∴△ABC是等边三角形,

∴∠B=60°,

∴△BED是等边三角形,

∴BE=DE,

∵AE=DE,

∴AE= AB,

=


【解析】(1)先根据题意得出△BDE∽△CFD,再由相似三角形的性质即可得出结论;(2)①根据相似三角形的性质得到 ,推出△BDE∽△DEF,根据相似三角形的性质即可得到结论;②由四边形AEDF为菱形,得到∠AEF=∠DEF,于是得到∠AEF=60°,推出△ABC是等边三角形,△BED是等边三角形,得到BE=DE,即可得到结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网