题目内容
【题目】如图,在平面直径坐标系中,反比例函数y= (x>0)的图象上有一点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D,CD=
(1)点D的横坐标为(用含m的式子表示);
(2)求反比例函数的解析式.
【答案】
(1)m+2
(2)解:∵CD∥y轴,CD= ,
∴点D的坐标为:(m+2, ),
∵A,D在反比例函数y= (x>0)的图象上,
∴4m= (m+2),
解得:m=1,
∴点A的坐标为(1,4),
∴k=4m=4,
∴反比例函数的解析式为:y=
【解析】解:(1)∵A(m,4),AB⊥x轴于点B, ∴B的坐标为(m,0),
∵将点B向右平移2个单位长度得到点C,
∴点C的坐标为:(m+2,0),
∵CD∥y轴,
∴点D的横坐标为:m+2;
所以答案是:m+2;
【题目】某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:
组号 | 分组 | 频数 |
一 | 6≤m<7 | 2 |
二 | 7≤m<8 | 7 |
三 | 8≤m<9 | a |
四 | 9≤m≤10 | 2 |
(1)求a的值;
(2)若用扇形图来描述,求分数在8≤m<9内所对应的扇形图的圆心角大小;
(3)将在第一组内的两名选手记为:A1、A2 , 在第四组内的两名选手记为:B1、B2 , 从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).
【题目】下表记录的是流花河今年某一周内的水位变化情况,上周末(星期六)的水位已达到警戒水位米.(正号表示水位比前一天上升,负号表示水位比前一天下降)
星期 | 日 | 一 | 二 | 三 | 四 | 五 | 六 |
水位变化 |
本周哪一天河流的水位最高?哪一天河流的水位最低?它们位于警戒水位之上还是之下?
与上周末相比,本周末河流的水位是上升了还是下降了?