题目内容
【题目】已知关于x的方程x2+(k+3)x+=0有两个不相等的实数根.
(1)求k的取值范围;
(2)若方程两根为x1,x2,那么是否存在实数k,使得等式=﹣1成立?若存在,求出k的值;若不存在,请说明理由.
【答案】(1)k>﹣;(2)6.
【解析】分析:(1)根据方程的系数结合根的判别式△>0,即可得出关于k的一元一次不等式,解之即可得出结论;(2)根据根与系数的关系可得出x1+x2=﹣k﹣3、x1x2=,将其代入中求出k值,再由(1)的结论即可确定k值,进而求解.
详解:(1)∵关于x的方程x2+(k+3)x+=0有两个不相等的实数根,
∴△=(k+3)2﹣4×1×=6k+9>0,
解得:k>﹣.
(2)∵方程x2+(k+3)x+=0的两根为x1、x2,
∴x1+x2=﹣k﹣3,x1x2=.
∵=﹣1,即=﹣1,
∴k2﹣4k﹣12=0,
解得:k1=﹣2,k2=6.
∵k>﹣,
∴k=6.
练习册系列答案
相关题目
【题目】某市需调查该市九年级男生的体能状况,为此抽取了50名九年级男生进行引体向上个数测试,测试情况绘制成表格如下:
个数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
人数 | 1 | 1 | 6 | 18 | 10 | 6 | 2 | 2 | 1 | 1 | 2 |
(1)求这次抽样测试数据的平均数、众数和中位数;
(2)在平均数、众数和中位数中,你认为用哪一个统计量作为该市九年级男生引体向上项目测试的合格标准个数较为合适?简要说明理由;
(3)如果该市今年有3万名九年级男生,根据(2)中你认为合格的标准,试估计该市九年级男生引体向上项目测试的合格人数是多少?