题目内容
阅读材料:
如图(1),在四边形ABCD中,对角线AC⊥BD,垂足为P,求证:S四边形ABCD=AC·BD.
证明:∵AC⊥BD ∴
∴S四边形ABCD=S△ACD+S△ABC=AC·PD+AC·PB=AC(PD+PB)=AC ·BD
解答问题:
(1)上述证明得到的性质可叙述为: ▲
(2)已知:如图(2),等腰梯形ABCD中,AD∥BC,对角线AC⊥BD且相交于点P,AD=3cm,BC=7cm,利用上述的性质求梯形的面积.