题目内容

【题目】如图,抛物线y=ax2+bx+c经过A(﹣3,0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.

(1)求抛物线的解析式;
(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;
(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.

【答案】
(1)

解:如图1,

∵A(﹣3,0),C(0,4),

∴OA=3,OC=4.

∵∠AOC=90°,

∴AC=5.

∵BC∥AO,AB平分∠CAO,

∴∠CBA=∠BAO=∠CAB.

∴BC=AC.

∴BC=5.

∵BC∥AO,BC=5,OC=4,

∴点B的坐标为(5,4).

∵A(﹣3,0)、C(0,4)、B(5,4)在抛物线y=ax2+bx+c上,

解得:

∴抛物线的解析式为y=﹣ x2+ x+4


(2)

解:如图2,

设直线AB的解析式为y=mx+n,

∵A(﹣3,0)、B(5,4)在直线AB上,

解得:

∴直线AB的解析式为y= x+

设点P的横坐标为t(﹣3≤t≤5),则点Q的横坐标也为t.

∴yP= t+ ,yQ=﹣ t2+ t+4.

∴PQ=yQ﹣yP=﹣ t2+ t+4﹣( t+

=﹣ t2+ t+4﹣ t﹣

=﹣ t2+ +

=﹣ (t2﹣2t﹣15)

=﹣ [(t﹣1)2﹣16]

=﹣ (t﹣1)2+

∵﹣ <0,﹣3≤t≤5,

∴当t=1时,PQ取到最大值,最大值为

∴线段PQ的最大值为


(3)

解:①当∠BAM=90°时,如图3所示.

抛物线的对称轴为x=﹣ =﹣ =

∴xH=xG=xM=

∴yG= × + =

∴GH=

∵∠GHA=∠GAM=90°,

∴∠MAH=90°﹣∠GAH=∠AGM.

∵∠AHG=∠MHA=90°,∠MAH=∠AGM,

∴△AHG∽△MHA.

=

解得:MH=11.

∴点M的坐标为( ,﹣11).

②当∠ABM=90°时,如图4所示.

∵∠BDG=90°,BD=5﹣ = ,DG=4﹣ =

∴BG=

=

=

同理:AG=

∵∠AGH=∠MGB,∠AHG=∠MBG=90°,

∴△AGH∽△MGB.

=

=

解得:MG=

∴MH=MG+GH

= +

=9.

∴点M的坐标为( ,9).

综上所述:符合要求的点M的坐标为( ,9)和( ,﹣11).


【解析】(1)如图1,易证BC=AC,从而得到点B的坐标,然后运用待定系数法求出二次函数的解析式.(2)如图2,运用待定系数法求出直线AB的解析式.设点P的横坐标为t,从而可以用t的代数式表示出PQ的长,然后利用二次函数的最值性质就可解决问题.(3)由于AB为直角边,分别以∠BAM=90°(如图3)和∠ABM=90°(如图4)进行讨论,通过三角形相似建立等量关系,就可以求出点M的坐标.
【考点精析】通过灵活运用二次函数的性质,掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网