题目内容
【题目】如图,某公司组织员工假期去旅游,租用了一辆耗油量为每百公里约为25L的大巴车,大巴车出发前油箱有油100L,大巴车的平均速度为80km/h,行驶若干小时后,由于害怕油箱中的油不够,在途中加了一次油,油箱中剩余油量y(L)与行驶时间x(h)之间的关系如图所示,请根据图象回答下列问题:
(1)汽车行驶h后加油,中途加油L;
(2)求加油前油箱剩余油量y与行驶时间x的函数解析式;
(3)若当油箱中剩余油量为10L时,油量表报警,提示需要加油,大巴车不再继续行驶,则该车最远能跑多远?此时,大巴车从出发到现在已经跑了多长时间?
【答案】
(1)2,190
(2)解:y=100﹣80×0.25x=﹣20x+100
(3)解:由于速度相同,因此每小时耗油量也是相同的,
设此时油箱剩余油量y与行驶时间x的解析式为y=kx+b
把k=﹣20代入,得到y=﹣20x+b,
再把(2,250)代入,得b=290,
所以y=﹣20x+290,
当y=10时,x=14,所以14×80=1120,
因此该车从出发到现在已经跑了1120km,用时14h
【解析】解:(1)由图象可以直接看出汽车行驶两小时后加油,汽车2小时耗油25× =40,由此可知加油量为:250﹣(100﹣40)=190;
所以答案是:2,190;
【考点精析】本题主要考查了确定一次函数的表达式的相关知识点,需要掌握确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法才能正确解答此题.
练习册系列答案
相关题目