题目内容
【题目】如图,直线AE与CD相交于点B,∠DBE=50°,BF⊥AE,求∠CBF和∠DBF的度数.
【答案】解:∵BF⊥AE,
∴∠FBE=∠ABF=90°,
∵∠DBE=50°,
∴∠DBF=∠FBE﹣∠DBE=90°﹣50°=40°,∠ABC=∠DBE=50°,
∴∠CBF=∠ABF+∠ABC=90°+50°=140°
【解析】根据垂直得出∠FBE=∠ABF=90°,求出∠DBF=∠FBE﹣∠DBE=40°,∠ABC=∠DBE=50°,即可求出∠CBF.
【考点精析】关于本题考查的对顶角和邻补角和垂线的性质,需要了解两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个;垂线的性质:1、过一点有且只有一条直线与己知直线垂直.2、垂线段最短才能得出正确答案.
练习册系列答案
相关题目