题目内容
【题目】如图,在平面直角坐标系内,小正方形网格的边长为1个单位长度,的三个顶点的坐标分别为,,.
(1)画出将向上平移2个单位长度,再向左平移5个单位长度后得到的;
(2)画出将绕点按顺时针方向旋转90°得到的;
(3)在轴上存在一点,满足点到点与点的距离之和最小,请直接写出点的坐标.
【答案】(1)答案见解析;(2)答案见解析;(3).
【解析】
(1)先分别将A、B、C三点向上平移2个单位长度,再向左平移5个单位长度得到,然后连接、、即可;
(2)根据题意,先将边OC和OA绕点顺时针方向旋转90°得到、,然后连接即可;
(3)连接交x轴于点P,根据两点之间线段最短即可得出此时点到点与点的距离之和最小,然后利用待定系数法求出直线的解析式,从而求出点P 的坐标.
解:(1)先分别将A、B、C三点向上平移2个单位长度,再向左平移5个单位长度得到,然后连接、、,如图所示,即为所求;
(2)先将边OC和OA绕点顺时针方向旋转90°得到、,然后连接,如图所示,即为所求;
(3)连接交x轴于点P,根据两点之间线段最短,即可得出此时点到点与点的距离之和最小,
由平面直角坐标系可知:点A的坐标为(4,3),点的坐标为(3,-4)
设直线的解析式为y=kx+b
将A、的坐标代入,得
解得:
∴直线的解析式为y=7x-25
将y=0代入,得
∴点P的坐标为.
练习册系列答案
相关题目