题目内容

【题目】如图,正方形ABCD中,ECD边上一点,FBC延长线上一点,CE=CF.

(1)求证:△BCE≌△DCF;

(2)若∠BEC=60°,求∠EFD的度数.

【答案】(1)见解析;(2)EFD=15°.

【解析】

试题(1)可利用边角边证明BE、DF所在的两个直角三角形全等,进而证明这两条线段相等;
(2)由(1)中的全等可得∠DFC=∠BEC=60°,易得∠CFE=45°,相减即可得到所求角的度数.

试题解析:(1)证明:∵ABCD是正方形,

∴DC=BC,∠DCB=∠FCE,

∵CE=CF,

∴△DCF≌△BCE;

(2)∵△BCE≌△DCF,

∴∠DFC=∠BEC=60°,

∵CE=CF,

∴∠CFE=45°,

∴∠EFD=15°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网