题目内容
【题目】制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y(℃)从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.
(1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;
(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?
【答案】(1)y=;(2)20分钟
【解析】
1)当0≤x≤5时,设一次函数解析式为y=kx+b,把(0,15),(5,60)代入,然后解关于k、b的方程组即可;当x>5时,设反比例函数解析式为y=,把(5,60)代入求出m即可得到反比例函数解析式;
(2)计算y=15时所对应的反比例函数值即可.
(1)当0≤x≤5时,
设一次函数解析式为y=kx+b,
把(0,15),(5,60)代入得,
,
解得,,
所以一次函数解析式为y=9x+15;
当x>5时,设反比例函数解析式为y=,
把(5,60)代入得m=5×60=300,
所以反比例函数解析式为y=;
(2)当y=15时,=15,解得x=20,
所以从开始加热到停止操作,共经历了20分钟.
练习册系列答案
相关题目