题目内容
【题目】一个质地均匀的小正方体,六个面分别标有数字“1”“2”“3”“4”“5”“6”. 连续两次抛掷小正方体,观察每次朝上一面的数字.
(1)请用列表格或画树状图的方法列举出两次抛掷的所有可能结果;
(2)求出第二次抛掷的数字大于第一次抛掷的数字的概率;
(3)求两次抛掷的数字之和为5的概率.
【答案】(1)见解析;(2)(3)
【解析】(1)两次抛掷的所有可能结果如下表:
第一次 第二次 | 1 | 2 | 3 | 4 | 5 | 6 |
1 | (1,1) | (2,1) | (3,1) | (4,1) | (5,1) | (6,1) |
2 | (1,2) | (2,2) | (3,2) | (4,2) | (5,2) | (6,2) |
3 | (1,3) | (2,3) | (3,3) | (4,3) | (5,3) | (6,3) |
4 | (1,4) | (2,4) | (3,4) | (4,4) | (5,4) | (6,4) |
5 | (1,5) | (2,5) | (3,5) | (4,5) | (5,5) | (6,5) |
6 | (1,6) | (2,6) | (3,6) | (4,6) | (5,6) | (6,6) |
抛掷两次小正方体的所有可能结果共有36种,并且它们出现的可能性相等.
(2)第二次抛掷的数字大于第一次抛掷的数字(记为事件A)的结果共有15种,即(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),所以
P(A)=
(3)两次抛掷的数字之和为5(记为事件B)的结果共有4种,即(1,4),(2,3),(3,2),(4,1),所以
P(B)==(3)
练习册系列答案
相关题目