题目内容
【题目】如图,直线AB:y=x+2与x轴、y轴分别交于A,B两点,C是第一象限内直线AB上一点,过点C作CD⊥x轴于点D,且CD的长为,P是x轴上的动点,N是直线AB上的动点.
(1)直接写出A,B两点的坐标;
(2)如图①,若点M的坐标为(0,),是否存在这样的P点.使以O,P,M,N为顶点的四边形是平行四边形?若有在,请求出P点坐标;若不存在,请说明理由.
(3)如图②,将直线AB绕点C逆时针旋转交y轴于点F,交x轴于点E,若旋转角即∠ACE=45°,求△BFC的面积.
【答案】(1)点A(﹣4,0),点B(0,2);(2)点P(﹣1,0)或(﹣7,0)或(7,0);(3)S△BFC=.
【解析】
(1)令x=0,y=0可求点A,点B坐标;
(2)分OM为边,OM为对角线两种情况讨论,由平行四边形的性质可求点P坐标;
(3)过点C作CG⊥AB,交x轴于点G,由题意可得点C坐标,即可求直线CG解析式为:y=2x+,可得点G坐标,由锐角三角函数和角平分线的性质可得,可求点E坐标,用待定系数法可求直线CF解析式,可求点F坐标,即可求△BFC的面积.
(1)当x=0时,y=2,
当y=0时,0=×x+2
∴x=﹣4
∴点A(﹣4,0),点B(0,2)
故答案为:(﹣4,0),(0,2)
(2)设点P(x,0)
若OM为边,则OM∥PN,OM=PN
∵点M的坐标为(0, ),
∴OM⊥x轴,OM=
∴PN⊥x轴,PN=
∴当y=时,则=x+2
∴x=﹣1
当y=﹣时,则﹣=x+2
∴x=﹣7
∴点P(﹣1,0),点P(﹣7,0)
若OM为对角线,则OM与PN互相平分,
∵点M的坐标为(0,),点O的坐标(0,0)
∴OM的中点坐标(0,)
∵点P(x,0),
∴点N(﹣x,)
∴=×(﹣x)+2
∴x=7
∴点P(7,0)
综上所述:点P(﹣1,0)或(﹣7,0)或(7,0)
(3)∵CD=,即点C纵坐标为,
∴=x+2
∴x=3
∴点C(3,)
如图,过点C作CG⊥AB,交x轴于点G,
∵CG⊥AB,
∴设直线CG解析式为:y=﹣2x+b
∴=﹣2×3+b
∴b=
∴直线CG解析式为:y=﹣2x+,
∴点G坐标为(,0)
∵点A(﹣4,0),点B(0,2)
∴OA=4,OB=2,AG=
∵tan∠CAG=
∴
∵∠ACF=45°,∠ACG=90°
∴∠ACF=∠FCG=45°
∴,且AE+EG=
∴AE=
∴OE=AE﹣AO=
∴点E坐标为(,0)
设直线CE解析式为:y=mx+n
∴
解得:m=3,n=
∴直线CE解析式为:y=3x
∴当x=0时,y=
∴点F(0,)
∴BF=
∴S△BFC=.