题目内容
【题目】如图,∠ABD和∠BDC的平分线交于点E,BE的延长线交CD于点F,且∠1+∠2=90°.猜想∠2与∠3的关系并证明.
【答案】∠2+∠3=90°.证明见解析.
【解析】试题分析:根据角平分线定义得出∠ABF=∠1,∠ABD=2∠1,∠BDC=2∠2,求出∠ABF+∠2=90°,∠ABD+∠BDC=180°,根据平行线的判定得出AB∥DC,根据平行线的性质得出∠3=∠ABF,即可得出答案.
试题解析:∠2+∠3=90°,
证明:∵∠ABD和∠BDC的平分线交于点E,
∴∠ABF=∠1,∠ABD=2∠1,∠BDC=2∠2,
∵∠1+∠2=90°,
∴∠ABF+∠2=90°,∠ABD+∠BDC=2×90°=180°,
∴AB∥DC,
∴∠3=∠ABF,
∴∠2+∠3=90°.
练习册系列答案
相关题目