题目内容
【题目】如图,抛物线y=ax2+bx﹣4与x轴交于A(4,0)、B(﹣2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D,连接CP.
(1)求该抛物线的解析式;
(2)当动点P运动到何处时,BP2=BDBC;
(3)当△PCD的面积最大时,求点P的坐标.
【答案】(1);(2)(,0);(3)(1,0)
【解析】
试题分析:(1)由抛物线y=ax2+bx﹣4过点A(4,0)、B(﹣2,0)根据待定系数法求解即可;
(2)设点P运动到点(x,0)时,有BP2=BDBC,在中,令x=0时,则y=﹣4,即可求得点C的坐标,由PD∥AC可得△BPD∽△BAC,再根据相似三角形的性质求解即可;
(3)由△BPD∽△BAC,根据相似三角形的性质及二次函数的性质求解即可.
(1)∵抛物线y=ax2+bx﹣4与x轴交于A(4,0)、B(﹣2,0)两点
∴,解得
∴抛物线的解析式为;
(2)设点P运动到点(x,0)时,有BP2=BDBC,
在中,令x=0时,则y=﹣4
∴点C的坐标为(0,﹣4)
∵PD∥AC
∴△BPD∽△BAC
∴
∵,AB=6,BP=x﹣(﹣2)=x+2
∴,即
∵BP2=BDBC,
∴,解得x1=,x2=﹣2(不合题意,舍去)
∴点P的坐标是(,0)
∴当点P运动到(,0)时,BP2=BDBC;
(3)∵△BPD∽△BAC,
∴
∴,
又∵,
∴
∵<0,∴当x=1时,S△BPC有最大值为3
∴点P的坐标为(1,0)时,△PDC的面积最大。
练习册系列答案
相关题目