题目内容

【题目】AOB与∠COD有共同的顶点O,其中∠AOB=COD=60°.

(1)如图①,试判断∠AOC与∠BOD的大小关系,并说明理由

(2)如图①,若∠BOC=10°,求∠AOD的度数

(3)如图①,猜想∠AOD与∠BOC的数量关系,并说明理由;

(4)若改变∠AOB,COD的位置,如图②,则(3)的结论还成立吗?若成立请证明若不成立,请直接写出你的猜想.

【答案】1)∠AOC=BOD;(2110°;(3)∠AOD+∠COB=120°;(4)不成立,猜想:∠AOD+BOC=240°

【解析】

1)利用角的和差定义证明即可

2)求出∠AOC即可解决问题

3)结论AOD+∠COB=120°.利用角的和差定义证明即可

4)不成立.猜想AOD+∠BOC=240°,根据周角的性质证明即可

1)结论AOC=BOD理由如下

∵∠AOB=COD=60°,∴∠AOC+∠BOC=BOD+∠BOC∴∠AOC=BOD

2∵∠BCO=10°,AOB=60°,∴∠AOC=50°,∴∠AOD=AOC+∠COD=50°+60°=110°.

3)猜想AOD+∠COB=120°.理由如下

∵∠AOB=COD=60°,∴∠AOD=AOB+∠CODCOB=120°﹣COB∴∠AOD+∠COB=120°.

4)不成立.猜想AOD+∠BOC=240°.理由如下

∵∠AOB=COD=60°,∴∠AOD+∠BOC=360°﹣60°﹣60°=240°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网