题目内容
【题目】如图,一次函数的图象与,轴分别交于,两点,点与点关于轴对称.动点,分别在线段,上(点与点,不重合),且满足.
(1)求点,的坐标及线段的长度;
(2)当点在什么位置时,,说明理由;
(3)当为等腰三角形时,求点的坐标.
【答案】(1)10;(2)当点的坐标是时,;(3)点的坐标是或.
【解析】
(1)利用一次函数图象上点的坐标特征可求出点,的坐标,结合点与点关于轴对称可得出点的坐标,进而可得出线段的长度;
(2)当点的坐标是时,,由点,的坐标可得出的长度,由勾股定理可求出的长度,进而可得出,通过角的计算及对称的性质可得出,,结合可证出,由此可得出:当点的坐标是时,;
(3)分,及三种情况考虑:①当时,由(2)的结论结合全等三角形的性质可得出当点的坐标是时;②当时,利用等腰三角形的性质结合可得出,利用三角形外角的性质可得出,进而可得出此种情况不存在;③当时,利用等腰三角形的性质结合可得出,设此时的坐标是,在中利用勾股定理可得出关于的一元一次方程,解之即可得出结论.综上,此题得解.
解:(1)当时,,
点的坐标为;
当时,,解得:,
点的坐标为;
点与点关于轴对称,
点的坐标为,
.
(2)当点的坐标是时,,理由如下:
点的坐标为,点的坐标为,
,
.
,,,
.
和关于轴对称,
.
在和中,
.
当点的坐标是时,.
(3)分为三种情况:
①当时,如图1所示,由(2)知,当点的坐标是时,
,
此时点的坐标是;
②当时,则,
,
.
而根据三角形的外角性质得:,
此种情况不存在;
③当时,则,
,如图2所示.
设此时的坐标是,
在中,由勾股定理得:
,
,
解得:,
此时的坐标是.
综上所述:当为等腰三角形时,点的坐标是或.
练习册系列答案
相关题目