题目内容

【题目】已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:
①该抛物线的对称轴在y轴左侧;
②关于x的方程ax2+bx+c+2=0无实数根;
③a﹣b+c≥0;
的最小值为3.
其中,正确结论的个数为( )
A.1个
B.2个
C.3个
D.4个

【答案】D
【解析】解:∵b>a>0
∴﹣ <0,
所以①正确;
∵抛物线与x轴最多有一个交点,
∴b2﹣4ac≤0,
∴关于x的方程ax2+bx+c+2=0中,△=b2﹣4a(c+2)=b2﹣4ac﹣8a<0,
所以②正确;
∵a>0及抛物线与x轴最多有一个交点,
∴x取任何值时,y≥0
∴当x=﹣1时,a﹣b+c≥0;
所以③正确;
当x=﹣2时,4a﹣2b+c≥0
a+b+c≥3b﹣3a
a+b+c≥3(b﹣a)
≥3
所以④正确.
故选:D.
从抛物线与x轴最多一个交点及b>a>0,可以推断抛物线最小值最小为0,对称轴在y轴左侧,并得到b2﹣4ac≤0,从而得到①②为正确;由x=﹣1及x=﹣2时y都大于或等于零可以得到③④正确.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网