题目内容

【题目】以AB、AC为边向ABC外作等边ABD和等边ACE,连接BE,CD,请你完成图形,并证明:BE=CD.(尺规作图,不写作法,保留作图痕迹)

【答案】作图与证明见解析

【解析】

试题分析:分别以A、B为圆心,AB长为半径画弧,两弧交于点D,连接AD,BD,同理连接AE,CE,如图所示,由三角形ABD与三角形ACE都是等边三角形,得到三对边相等,两个角相等,都为60度,利用等式的性质得到夹角相等,利用SAS得到三角形CAD与三角形EAB全等,利用全等三角形的对应边相等即可得证.

试题解析:如图所示:

∵△ABD和ACE都是等边三角形,

AD=AB,AC=AE,BAD=CAE=60°,

∴∠BAD+BAC=CAE+BAC,即CAD=EAB,

CAD和EAB中,

∴△CAD≌△EAB(SAS),

BE=CD.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网