题目内容
【题目】某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)设每月的销售利润为W,请直接写出W与x的函数关系式;
(3)每件商品的售价定位多少元时,每个月可获得最大利润?最大的月利润是多少元?
【答案】
(1)解:当50≤x≤80时,y=210﹣(x﹣50),即y=260﹣x,
当80<x<140时,y=210﹣(80﹣50)﹣3(x﹣80),即y=420﹣3x.
则
(2)解:由利润=(售价﹣成本)×销售量可以列出函数关系式
w=﹣x2+300x﹣10400(50≤x≤80)
w=﹣3x2+540x﹣16800(80<x<140)
(3)解:当50≤x≤80时,w=﹣x2+300x﹣10400,
当x=80有最大值,最大值为7200,
当80<x<140时,w=﹣3x2+540x﹣16800,
当x=90时,有最大值,最大值为7500,
故售价定为90元.利润最大为7500元
【解析】(1)当售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,y=260﹣x,50≤x≤80,当如果售价超过80元后,若再涨价,则每涨1元每月少卖3件,y=420﹣3x,80<x<140,(2)由利润=(售价﹣成本)×销售量列出函数关系式,(3)分别求出两个定义域内函数的最大值,然后作比较.
练习册系列答案
相关题目