题目内容

【题目】如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB.

(1)求证:①PE=PD;②PE⊥PD;
(2)设AP=x,△PBE的面积为y.
①求出y关于x的函数关系式,并写出x的取值范围;
②当x取何值时,y取得最大值,并求出这个最大值.

【答案】
(1)

证明:①过点P作GF∥AB,分别交AD、BC于G、F.如图所示.

∵四边形ABCD是正方形,

∴四边形ABFG和四边形GFCD都是矩形,

△AGP和△PFC都是等腰直角三角形.

∴GD=FC=FP,GP=AG=BF,∠PGD=∠PFE=90度.

又∵PB=PE,

∴BF=FE,

∴GP=FE,

∴△EFP≌△PGD(SAS).

∴PE=PD.

②∴∠1=∠2.

∴∠1+∠3=∠2+∠3=90度.

∴∠DPE=90度.

∴PE⊥PD


(2)

解:①过P作PM⊥AB,可得△AMP为等腰直角三角形,

四边形PMBF为矩形,可得PM=BF,

∵AP=x,∴PM= x,

∴BF=PM= x,PF=1﹣ x.

∴SPBE= BE×PF=BFPF= x(1﹣ x)=﹣ x2+ x.

即y=﹣ x2+ x.(0<x< ).

②y=﹣ x2+ x=﹣ (x﹣ 2+

∵a=﹣ <0,

∴当x= 时,y最大值=


【解析】(1)可通过构建全等三角形来求解.过点P作GF∥AB,分别交AD、BC于G、F,那么可通过证三角形GPD和EFP全等来求PD=PE以及PE⊥PD.在直角三角形AGP中,由于∠CAD=45°,因此三角形AGP是等腰直角三角形,那么AG=PG,而PB=PE,PF⊥BE,那么根据等腰三角形三线合一的特点可得出BF=FE=AG=PG,同理可得出两三角形的另一组对应边DG,PF相等,因此可得出两直角三角形全等.可得出PD=PE,∠GDP=∠EPF,而∠GDP+∠GPD=90°,那么可得出∠GPD+∠EPF=90°,由此可得出PD⊥PE.(2)求三角形PBE的面积,就要知道底边BE和高PF的长,(1)中已得出BF=FE=AG,那么可用AP在等腰直角三角形AGP中求出AG,GP即BF,FE的长,那么就知道了底边BE的长,而高PF=CD﹣GP,也就可求出PF的长,可根据三角形的面积公式得出x,y的函数关系式.然后可根据函数的性质及自变量的取值范围求出y的最大值以及对应的x的取值.
【考点精析】通过灵活运用全等三角形的性质,掌握全等三角形的对应边相等; 全等三角形的对应角相等即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网