题目内容
【题目】为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:
(1)该班级女生人数是 ;女生收看“两会”新闻次数的众数是 ;中位数是 .
(2)求女生收看次数的平均数.
(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明计算出女生收看“两会”新闻次数的方差为,男生收看“两会”新闻次数的方差为2,请比较该班级男、女生收看“两会”新闻次数的波动大小.
(4)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”,如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数.
【答案】(1)20(人),众数为3;中位数是3;(2)30;(3)男生比女生的波动幅度大;(4)男生有25人.
【解析】
试题分析:(1)将各观看次数的人数相加得到女生总数,观看次数最多的为众数,从小到大排列后,最中间或中间两数的平均为中位数;
(2)根据加权平均数的算法,列式计算即可;
(3)由方差可判断,方差小说明波动小;
(4)根据题意,求出女生的关注指数,进而得到男生的关注指数,设男生人数为x,列出方程,解之可得.
解:(1)该班级女生人数为:2+5+6+5+2=20(人),
其中收看3次的人数最多,达6次,故众数为3;
该班级女生收看次数的中位数是从小到大排列的第10、11个数的平均数,均为3,故中位数是3;
(2)女生收看次数的平均数是:×(1×2+2×5+3×6+4×5+5×2)==30;
(3)∵2>,
∴所以男生比女生的波动幅度大;
(4)由题意:该班女生对“两会”新闻的“关注指数”为×100%=65%,
所以,男生对“两会”新闻的“关注指数”为60%
设该班的男生有x人
则,
解得:x=25,
答:该班级男生有25人.
【题目】抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
从上表可知,下列说法正确的个数是( )
①抛物线与x轴的一个交点为(﹣2,0);②抛物线与y轴的交点为(0,6);③抛物线的对称轴是x=1;④在对称轴左侧y随x增大而增大.
A.1 B.2 C.3 D.4