题目内容
【题目】如图,四边形ABCD是长方形(长方形对边相等且平行,四个角为直角),
(1)用直尺和圆规在边CD上找一个点P,使△ADP沿着直线AP翻折后D点正好落在BC边上的Q点(不写作法,保留作图痕迹).连结AP,AQ,PQ
(2)在(1)中作的新图形中,已知AB=5,AD=13,求CP的长.
【答案】(1)作图见解析;(2)CP=2.4
【解析】试题分析:(1)以A为圆心,以AD为半径交BC于点Q,作出∠DAQ的平分线,交CD于点P;
(2)利用△ABQ∽△QCP,根据相似三角形的对应边的比相等求得CP的值.
解:(1)如图所示,点P就是所求的图形;
(2)在直角△ABQ中,BQ==12,
则QC=BCBQ=1312=1,
∵∠AQP=∠ADC=90°,
∴∠AQB+∠PQC=90°,
又∵直角△ABQ中,∠BAQ+∠AQP=90°,
∴∠PQC=∠BAQ,
又∵∠B=∠C=90°,
∴△ABQ∽△QCP,
∴CP:BQ=QC:AB,即CP:12=1:5,
解得:CP=2.4.
练习册系列答案
相关题目