题目内容
【题目】在Rt三角形ABC中,∠ACB=90°,∠A=30° CD⊥AB于点D,那么△ACD与△BCD的面积之比为 .
【答案】3
【解析】解:∵CD⊥AB,
∴∠BCD+∠B=90°,
∵∠A+∠B=90°,
∴∠A=∠BCD,
∵∠B=∠B,
∴Rt△ABC∽Rt△CBD,
∴ =( )2=(sin∠A)2= ,
∴ =3.
所以答案是:3.
【考点精析】关于本题考查的相似三角形的性质和相似三角形的判定,需要了解对应角相等,对应边成比例的两个三角形叫做相似三角形;相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS)才能得出正确答案.
练习册系列答案
相关题目
【题目】九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:
售价(元/件) | 100 | 110 | 120 | 130 | … |
月销量(件) | 200 | 180 | 160 | 140 | … |
已知该运动服的进价为每件60元,设售价为x元.
(1)请用含x的式子表示:
①销售该运动服每件的利润是 ()元;
②月销量是 ()件;(直接写出结果)
(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?
(3)若销售该运动服所得的月利润不低于8000元,请确定售价x的取值范围.