题目内容
【题目】如图,在△ABC 中,AB=AC,点D,E在边BC上,且BD=CE.
(1)求证: △ABD≌△ACE;
(2)若∠B=40°,AB=BE,求∠DAE的度数.
【答案】(1)见解析;(2)40°.
【解析】
(1)根据SAS即可证明.
(2)由AB=BE,推出∠BAE=∠BEA,由∠B=40°,推出∠BAE=∠BEA=70°,由△ABD≌△ACE,推出AD=AE,推出∠ADE=∠AED=70°,推出∠DAE=180°-70°-70°=40°.
(1)证明:∵AB=AC,
∴∠B=∠C,
在△ABD和△ACE中,
,
∴△ABD≌△ACE.
(2)∵AB=BE,
∴∠BAE=∠BEA,
∵∠B=40°,
∴∠BAE=∠BEA=70°,
∵△ABD≌△ACE,
∴AD=AE,
∴∠ADE=∠AED=70°,
∴∠DAE=180°70°70°=40°.
练习册系列答案
相关题目