题目内容
【题目】如图,在△ABC中,∠C=90°,BC=4,AC=3.点P是斜边AB上一点,过点P作PM⊥AB交边AC或BC于点M.又过点P作AC的平行线,与过点M的PM的垂线交于点N.设边AP=x,△PMN与△ABC重合部分图形的周长为y.
(1)AB= .
(2)当点N在边BC上时,x= .
(3)求y与x之间的函数关系式.
(4)在点N位于BC上方的条件下,直接写出过点N与△ABC一个顶点的直线平分△ABC面积时x的值.
【答案】(1)5;(2);(3)详见解析;(4)满足条件的x的值为.
【解析】
(1)根据勾股定理可以直接求出(2)先证明四边形PAMN是平行四边形,再根据三角函数值求解(3)分情况根据t的大小求出不同的函数关系式(4)不同条件下:当点G是AC中点时和当点D是AB中点时,根据相似三角形的性质求解.
解:(1)在中,,
故答案为5.
(2)如图1中,
∴四边形PAMN是平行四边形,
当点在上时,,
.
(3)①当时,如图1,
.
②当时,如图2,
y
③当时,如图3,
(4)如图4中,当点是中点时,满足条件
.
如图5中,当点是中点时,满足条件.
.
综上所述,满足条件的x的值为或.
【题目】某校组织九年级学生参加汉字听写大赛,并随机抽取部分学生成绩作为样本进行分析,绘制成如下的统计表:
成绩x/分 | 频数 | 频率 | |
第1段 | x<60 | 2 | 0.04 |
第2段 | 60≤x<70 | 6 | 0.12 |
第3段 | 70≤x<80 | 9 | b |
第4段 | 80≤x<90 | a | 0.36 |
第5段 | 90≤x≤100 | 15 | 0.30 |
请根据所给信息,解答下列问题:
(1)a=______,b=______;
(2)请补全频数分布直方图;
(3)样本中,部分学生成绩的中位数落在第_______段;
(4)已知该年级有400名学生参加这次比赛,若成绩在90分以上(含90分)的为优,估计该年级成绩为优的有多少人?