题目内容
【题目】如图,在平行四边形ABCD中(AB>AD),AF平分∠DAB,交CD于点F,DE平分∠ADC,交AB于点E,AF与DE交于点O,连接EF
(1)求证:四边形AEFD为菱形;
(2)若AD=2,AB=3,∠DAB=60°,求平行四边形ABCD的面积.
【答案】(1)见解析;(2)3.
【解析】
(1)根据平行四边形的性质得到AB∥CD,得到∠EAF=∠DFA,根据角平分线的定义得到∠DAF=∠EAF,求得∠DAF=∠AFD,得到AD=DF,同理AD=AE,根据菱形的判定定理即可得到结论;
(2)过D作DH⊥AB于H,解直角三角形得到DE=,根据平行四边形的面积公式即可得到结论.
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠EAF=∠DFA,
∵AF平分∠DAB,
∴∠DAF=∥EAF,
∴∠DAF=∠AFD,
∴AD=DF,
同理AD=AE,
∴DF=AE,
∴四边形AEFD是平行四边形,
∵AD=DF,
∴四边形AEFD为菱形;
(2)过D作DH⊥AB于H,
∵∠DAB=60°,AD=2,
∴DH=,
∴平行四边形ABCD的面积=DHAB=3.
练习册系列答案
相关题目