题目内容
【题目】设二次函数y1=ax2+bx+a﹣5(a,b为常数,a≠0),且2a+b=3.
(1)若该二次函数的图象过点(﹣1,4),求该二次函数的表达式;
(2)y1的图象始终经过一个定点,若一次函数y2=kx+b(k为常数,k≠0)的图象也经过这个定点,探究实数k,a满足的关系式;
(3)已知点P(x0,m)和Q(1,n)都在函数y1的图象上,若x0<1,且m>n,求x0的取值范围(用含a的代数式表示).
【答案】(1)y=3x2﹣3x﹣2;(2)k=2a﹣5;(3)x0<.
【解析】
(1)将点(﹣1,4),即可求该二次函数的表达式
(2)将2a+b=3代入二次函数y=ax2+bx+a﹣5(a,b为常数,a≠0)中,整理得y1=[ax2+(3﹣2a)x+a﹣3]﹣2=(ax﹣a+3)(x﹣1)﹣2,可知恒过点(1,2),代入一次函数y2=kx+b(k为常数,k≠0)即可求实数k,a满足的关系式
(3)通过y1=ax2+(3﹣2a)x+a﹣5,可求得对称轴为x=﹣,因为x0<1,且m>n,所以只需判断对称轴的位置即可求x0的取值范围
解:(1)∵函数y1=ax2+bx+a﹣5的图象经过点(﹣1,4),且2a+b=3
∴,
∴,
∴函数y1的表达式为y=3x2﹣3x﹣2;
(2)∵2a+b=3
∴二次函数y1=ax2+bx+a﹣5=ax2+(3﹣2a)x+a﹣5,
整理得,y1=[ax2+(3﹣2a)x+a﹣3]﹣2=(ax﹣a+3)(x﹣1)﹣2
∴当x=1时,y1=﹣2,
∴y1恒过点(1,﹣2)
∴代入y2=kx+b得
∴﹣2=k+3﹣2a得k=2a﹣5
∴实数k,a满足的关系式:k=2a﹣5
(3)
∵y1=ax2+(3﹣2a)x+a﹣5
∴对称轴为x=﹣,
∵x0<1,且m>n
∴当a>0时,对称轴x=﹣,解得,
当a<0时,对称轴x=﹣,解得(不符合题意,故x0不存在)
故x0的取值范围为:
【题目】从共享单车,共享汽车等共享出行到共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速的普及,根据国家信息中心发布的中国分享经济发展报告2017显示,参与共享经济活动超6 亿人,比上一年增加约1亿人.
(1)为获得北京市市民参与共享经济活动信息,下列调查方式中比较合理的是 ;
A.对某学校的全体同学进行问卷调查
B.对某小区的住户进行问卷调查
C.在全市里的不同区县,选取部分市民进行问卷调查
(2)调查小组随机调查了延庆区市民骑共享单车情况,某社区年龄在12~36岁的人有1000人,从中随机抽取了100人,统计了他们骑共享单车的人数,并绘制了如下不完整的统计图表.如图所示.骑共享单车的人数统计表
年龄段(岁) | 频数 | 频率 |
12≤x<16 | 2 | 0.02 |
16≤x<20 | 3 | 0.03 |
20≤x<24 | 15 | a |
24≤x<28 | 25 | 0.25 |
28≤x<32 | b | 0.30 |
32≤x<36 | 25 | 0.25 |
根据以上信息解答下列问题:
①统计表中的a= ;b= ;
②补全频数分布直方图;
③试估计这个社区年龄在20岁到32岁(含20岁,不含32岁)骑共享单车的人有多少人?