题目内容
如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.正确的有( )
A、1个 | B、2个 | C、3个 | D、4个 |
分析:根据题给条件,证不出①CM=DM;△BMN是由△BMC翻折得到的,故BN=BC,又点F为BC的中点,可知:sin∠BNF=
=
,求出∠BNF=30°,继而可求出②∠ABN=30°;在Rt△BCM中,∠CBM=30°,继而可知BC=
CM,可以证出③AB2=3CM2;求出∠NPM=∠NMP=60°,继而可证出④△PMN是等边三角形.
BF |
BN |
1 |
2 |
3 |
解答:解:∵△BMN是由△BMC翻折得到的,
∴BN=BC,又点F为BC的中点,
在Rt△BNF中,sin∠BNF=
=
,
∴∠BNF=30°,∠FBN=60°,
∴∠ABN=90°-∠FBN=30°,故②正确;
在Rt△BCM中,∠CBM=
∠FBN=30°,
∴tan∠CBM=tan30°=
=
,
∴BC=
CM,AB2=3CM2故③正确;
∠NPM=∠BPF=90°-∠MBC=60°,∠NMP=90°-∠MBN=60°,
∴△PMN是等边三角形,故④正确;
由题给条件,证不出CM=DM,故①错误.
故正确的有②③④,共3个.
故选C.
∴BN=BC,又点F为BC的中点,
在Rt△BNF中,sin∠BNF=
BF |
BN |
1 |
2 |
∴∠BNF=30°,∠FBN=60°,
∴∠ABN=90°-∠FBN=30°,故②正确;
在Rt△BCM中,∠CBM=
1 |
2 |
∴tan∠CBM=tan30°=
CM |
BC |
| ||
3 |
∴BC=
3 |
∠NPM=∠BPF=90°-∠MBC=60°,∠NMP=90°-∠MBN=60°,
∴△PMN是等边三角形,故④正确;
由题给条件,证不出CM=DM,故①错误.
故正确的有②③④,共3个.
故选C.
点评:本题考查翻折变换的知识,有一定难度,注意掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
练习册系列答案
相关题目