题目内容
【题目】二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:
x | … | ﹣5 | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | … |
y | … | 4 | 0 | ﹣2 | ﹣2 | 0 | 4 | … |
下列说法正确的是( )
A.抛物线的开口向下
B.当x>﹣3时,y随x的增大而增大
C.二次函数的最小值是﹣2
D.抛物线的对称轴是x=﹣
【答案】D
【解析】解:将点(﹣4,0)、(﹣1,0)、(0,4)代入到二次函数y=ax2+bx+c中,得: ,解得: ,
∴二次函数的解析式为y=x2+5x+4.
A、a=1>0,抛物线开口向上,A不正确;
B、﹣ =﹣ ,当x≥﹣ 时,y随x的增大而增大,B不正确;
C、y=x2+5x+4= ,二次函数的最小值是﹣ ,C不正确;
D、﹣ =﹣ ,抛物线的对称轴是x=﹣ ,D正确.
故选D.
【考点精析】解答此题的关键在于理解二次函数的性质的相关知识,掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
练习册系列答案
相关题目
【题目】我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.
图形的变化 | 示例图形 | 与对应线段有关的结论 | 与对应点有关的结论 |
平移 | AA′=BB′ | ||
轴对称 | |||
旋转 | AB=A′B′;对应线段AB和A′B′所在的直线相交所成的角与旋转角相等或互补. |